next up previous
次へ: 微分公式(まとめ) 上へ: 微分と導関数 戻る: 微分と導関数

微分公式


$\displaystyle {
\frac{d}{dx}\{
A f(x)+B g(x)
\}
}$
    $\displaystyle \frac{1}{\Delta x}
\Delta[Af(x)+Bg(x)]$  
  $\textstyle =$ $\displaystyle A\frac{\Delta f(x)}{\Delta x}
+B\frac{\Delta g(x)}{\Delta x}$  
  $\textstyle \to$ $\displaystyle A f'(x)+B g'(x)$ (2)
$\displaystyle {
\frac{d}{dx}
\left[
f(x)g(x)
\right]
}$
    $\displaystyle \frac{1}{\Delta x}
\left[\{f+\Delta f\}\{g+\Delta g\}-f\cdot g
\right]$  
  $\textstyle =$ $\displaystyle \frac{1}{\Delta x}
\left[f\cdot\Delta g +g\cdot\Delta f + \Delta f\cdot\Delta g
\right]$  
  $\textstyle =$ $\displaystyle f\cdot\frac{\Delta g}{\Delta x}+\frac{\Delta f}{\Delta x}\cdot g
+\frac{\Delta f}{\Delta x}\cdot\frac{\Delta g}{\Delta x}\cdot \Delta x$  
  $\textstyle \to$ $\displaystyle f(x) g'(x)+f'(x)g(x)$ (3)
$\displaystyle {
\frac{d}{dx}
\left\{
\frac{1}{f(x)}
\right\}
}$
    $\displaystyle \frac{1}{\Delta x}
\left[
\frac{1}{f+\Delta f}-\frac{1}{f}
\right]$  
  $\textstyle =$ $\displaystyle \frac{1}{\Delta x}
\cdot
\frac{-\Delta f}{(f+\Delta f)f}$  
  $\textstyle =$ $\displaystyle -\frac{1}{(f+\Delta f)f}\frac{\Delta f}{\Delta x}$  
  $\textstyle \to$ $\displaystyle -\frac{f'(x)}{\{f(x)\}^2}$ (4)
$\displaystyle %%
{
\frac{d}{dx}\left\{\frac{f(x)}{g(x)}\right\}
}$
    $\displaystyle \frac{1}{\Delta x}
\left[
\frac{f+\Delta f}{g+\Delta g}-\frac{f}{g}
\right]$  
  $\textstyle =$ $\displaystyle \frac{1}{\Delta x}
\frac{g\Delta f- f\Delta g}{(g+\Delta g)g}$  
  $\textstyle =$ $\displaystyle \frac{1}{(g+\Delta g)g}
\cdot
\left\{
\frac{\Delta f}{\Delta x}g - f\frac{\Delta g}{\Delta x}
\right\}$  
  $\textstyle \to$ $\displaystyle \frac{f'(x)g(x)-f(x)g'(x)}{\{g(x)\}^2}$ (5)

合成関数の微分

\begin{displaymath}
z=z(y),\qquad y=y(x)
\end{displaymath}

のとき、

\begin{displaymath}
\frac{\Delta z}{\Delta x}=\frac{\Delta z}{\Delta y}\cdot
\frac{\Delta y}{\Delta x}
\end{displaymath}

$\Delta x\to 0$として、
$\displaystyle \frac{dz}{dx}$ $\textstyle =$ $\displaystyle \frac{dz}{dy}\times\frac{dy}{dx}$  
  $\textstyle =$ $\displaystyle z'(y)\times y'(x)$ (6)

微分の定義にしたがって次の関数を$x$について微分せよ。

(1) $\displaystyle y=x^2+3x+1$

\begin{eqnarray*}
\frac{dy}{dx}&=&\lim_{h\to0}
\frac{\{(x+h)^2+3(x+h)+1\}-\{x^...
...to0}\frac{2xh+h^2+3h}{h}\\
&=&\lim_{h\to0}2x+h+3\\
&=& 2x+3
\end{eqnarray*}

(2) $\displaystyle y=(x+3)(x-1)$

\begin{eqnarray*}
\frac{dy}{dx}
&=&\lim_{h\to0}\frac{(x+h+3)(x+h-1)-(x+3)(x-1)}{h}\\
&=&\lim_{h\to0}\frac{h^2+(2x+2)h}{h}\\
&=& 2x+2
\end{eqnarray*}

(3) $\displaystyle y=\frac{1}{x+1}$

\begin{eqnarray*}
\frac{dy}{dx}
&=&\lim_{h\to0}\frac{\frac{1}{x+h+1}-\frac{1}{x}}{h}
\end{eqnarray*}

通分して、整理する:

\begin{eqnarray*}
\frac{dy}{dx}
&=&\lim_{h\to0}\frac{(x+1)-(x+h+1)}{h(x+h+1)(x...
...=&\lim_{h\to0}\frac{-1}{(x+h+1)(x+1)}\\
&=&-\frac{1}{(x+1)^2}
\end{eqnarray*}

(4) $\displaystyle y=\frac{1+x}{x}$

\begin{eqnarray*}
y &=& \frac{1}{x}+1\\
\frac{dy}{dx}
&=&\lim_{h\to0}\frac{\...
...h}\\
&=&\lim_{h\to0}\frac{-h}{h(x+h)x}\\
&=& -\frac{1}{x^2}
\end{eqnarray*}

(5) $\displaystyle y=x+2+\frac{1}{x}$

\begin{eqnarray*}
\frac{dy}{dx}
&=&\lim_{h\to0}\frac{\{x+h+2+\frac{1}{x+h}\}-\...
...h\to0}\frac{h(x+h)x+x-(x+h)}{(x+h)xh}\\
&=& \frac{x^2-1}{x^2}
\end{eqnarray*}

(6) $\displaystyle y=(x+1)^3$

\begin{eqnarray*}
\lefteqn{
\frac{dy}{dx}
}\\
&=&\lim_{h\to0}\frac{(x+h+1)^...
...0}\left\{(x+h+1)^2+(x+h+1)(x+1)+(x+1)^2\right\}\\
&=&3(x+1)^2
\end{eqnarray*}

[公式]

\begin{displaymath}
\frac{d}{dx}\left\{a f(x)+b g(x)\right\}
=a f'(x)+b g'(x)
\end{displaymath}


\begin{displaymath}
\frac{d}{dx}\left\{f(x)\cdot g(x)\right\}
=f'(x)\cdot g(x)+f(x)\cdot g'(x)
\end{displaymath}


\begin{displaymath}
\frac{d}{dx}\left\{\frac{1}{f(x)}\right\}
= -\frac{f'(x)}{\left\{f(x)\right\}^2}
\end{displaymath}


\begin{displaymath}
\frac{d}{dx}\left\{\frac{f(x)}{g(x)}\right\}
= \frac{f'(x)\cdot g(x)-f(x)\cdot g'(x)}{\left\{f(x)\right\}^2}
\end{displaymath}


\begin{displaymath}
\frac{dz}{dx}=\frac{dz}{dy}\cdot \frac{dy}{dx}
\end{displaymath}

逆関数の微分

\begin{displaymath}
\frac{dy}{dx}=\frac{1}{\frac{dx}{dy}}
\end{displaymath}



Subsections
next up previous
次へ: 微分公式(まとめ) 上へ: 微分と導関数 戻る: 微分と導関数
T.Kinoshita 平成15年10月21日