next up previous
Next: 連続分布関数 Up: 付録 Previous: 2次式の最大,最小値

2元連立1次方程式

$\displaystyle \left[ \begin{array}{cc} a_{11}& a_{12}\ a_{21}& a_{22} \end{arr...
... \end{array} \right] = \left[ \begin{array}{c} b_1\ b_2\ \end{array} \right]$ (16)

の解

$\displaystyle \left[ \begin{array}{c} x\ y\ \end{array} \right] = \frac{1}{a_...
...11} \end{array} \right] \left[ \begin{array}{c} b_1\ b_2\ \end{array} \right]$ (17)

$\displaystyle x=\frac{a_{22}b_1+a_{12}b_2}{a_{11}a_{22}-a_{12}a_{21}}
,\qquad
y=\frac{-a_{21}b_1+a_{11}b_2}{a_{11}a_{22}-a_{12}a_{21}}
$



TKinoshita 2016-11-28